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The classical problem of the escape time of a metastable potential well in a thermal environment is generally
studied by various quantities like Kramers’ stationary escape rate, mean first passage time, nonlinear relaxation
time, or mean last passage time. In addition, numerical simulations lead to the definition of other quantities as
the long-time limit escape rate and the transient time. In this paper, we propose some simple analytical
relations between all these quantities. In particular, we point out the hypothesis used to evaluate these various
times in order to clarify their comparison and applicability, and show how average times include the transient
time and the long-time limit of the escape rate.
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INTRODUCTION

The escape time of a metastable potential well in a ther-
mal environment is a universal problem in physics and
chemistry that has been evaluated in various ways. Thermal
nuclear fission is a typical example that has motivated this
study. The full dissipation-fluctuation dynamics could be
solved numerically using either Langevin or Klein-Kramers
equations. However, for practical purposes such as the devel-
opment of deexcitation codes for hot nuclei, analytical for-
mulas are often preferred because of the high computing
time required by the latter approaches. Kramers, in his semi-
nal paper[1], evaluated the stationary escape rate for two
regimes: in the weak-damping limit, the escape rate is domi-
nated by an energy diffusion process whereas, in the high-
friction regime, it is dominated by a spatial diffusion process.
We will only consider the latter one here for which a simple
approximate formula can be derived when the temperature is
lower than the barrier height. Kramers’ escape time is then
just the inverse quantity. Another possible approach to deter-
mine the escape time is the older concept of mean first pas-
sage time(MFPT) at an exit point chosen beyond the barrier.
In the very-high-friction regime, when the Klein-Kramers
equation can be well approximated by the Smoluchowski
one, the MFPT can be evaluated analytically[2,3]. In the
low-noise limit—i.e., when the temperature is smaller than
the potential barrier—the two times are known to be equiva-
lent under the condition that the MFPT’s exit point be be-
yond the barrier, but not too far[3]. Recently, the concept of
mean last passage time(MLPT) at the barrier top was intro-
duced as an equivalent escape time[4], in order to cope with
the backward currents at the saddle, but no analytical for-
mula is available yet.

Beyond these low-noise approximations, is Kramers’ sta-
tionary escape rate over the barrier[1] always equivalent to
the MFPT at an exit point beyond the barrier[5] or to the

MLPT at the barrier[4]? As we shall prove that it is not the
case, what is the most-suited quantity to determine for ex-
ample the fission time of hot nuclei and compare it to other
disintegration channels? Several different formulas have
been used so far in deexcitation codes. To clarify the situa-
tion, we stress the hypothesis underlying each definition. The
main task of this paper is to present simple analytical rela-
tions inspired by the work of Ref.[6] to ease the comparison
between the various escape times. For the sake of complete-
ness, we will also consider the nonlinear relaxation time
(NLRT) [7] used to study phase transition phenomena[8]
and evaluated analytically for various potentials in the over-
damped limit[9].

Numerical simulations give access not only to mean val-
ues, but also to the escape rate as a function of time or the
passage time distribution that characterizes the dynamics of
the escape process. In particular, the transient time needed to
reach a quasistationary escape rate can play a crucial role in
the context of nuclear fission, because, at high excitation
energies, it is long enough to be compared to the time scale
of other decay channels such as neutron evaporation. We will
also show how these dynamical times are included in the
average ones.

UNIVERSAL RELATIONS

Starting from an arbitrary but fixed positionx0, one can
calculate the timestn

F, n=1, . . . ,N, it takes forN realizations
of the Brownian processxstd to leave the prescribed domain
G for the first time. By definition, the MFPTsTMFPTd reads

TMFPTfx0 → ]Gg = lim
N→`

1

No
n=1

N

tn
F. s1d

Of course, the problem considered should be physically
meaningful:x0PG and theTMFPTfx0→]Gg is finite. To get a
stationarity insideG, a constant sourceq in x0 is added so
that qdt is the number of new particles joining the ensemble
during the timedt. In Kramers’ approach, the source exactly*Electronic address: boilley@ganil.fr
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compensates the leak[10], but one can consider a more gen-
eral situation with an arbitrary value ofq. The particle den-
sity insideG, Wsx,td approaches a steady stateWsxd in the
long-time limit and the stationary escape rate fromG with an
absorbing border is then

G = qYE
G

Wsxddx. s2d

To find a relation betweenG and the MFPT, one needs to
define the relative number of particlesPst− t0,]G;x0d that
have not yet leftG at time t given that they have been
launched fromx0 at time t0. From the calculated escape
times, one has

Pst − t0,]G;x0d = lim
N→`

1

No
n=1

N

Qstn
F + t0 − td s3d

if the particles never come back in the domainG. This means
that a sink at the domain’s boundary]G is supposed to ab-
sorb all the outgoing particles. In the previous equation,Q is
the Heaviside step function. If one starts at timeti to con-
stantly inject particles atx0 at a rateq, the total population
insideG at time t is

E
G

Wsx,tddx=E
ti

t

qPst − t0,]G;x0ddt0 s4d

→q lim
N→`

1

No
n=1

N

tn
F, s5d

in the long-time limit or the steady state. Eventually, one gets

TMFPTfx0 → ]Gg = 1/G. s6d

Such a result, derived in Ref.[6], could easily be extended to
more general sources.

In this work we define Kramers’ escape rateGK as the
normalized stationary flux over the potential barrier. In con-
trast to the escape rate of Eq.(2), the domainG considered
when evaluatingGK encloses the metastable well and is lim-
ited to the saddle. Therefore, Kramers’ stationary rate in-
cludes backward currents and in this case Eq.(3) cannot be
applied. But after thelast passage timetn

L, the particle will
not enter the domain anymore. Assuming that for each real-
ization the time spent out of the domain withintn

L is small in
comparison to the time spent inside, one rather has, instead
of Eq. (3),

Pst − t0,xb;x0d & lim
N→`

1

No
n=1

N

Qstn
L + t0 − td s7d

and then, similarly,

GK * 1/TMLPTfx0 → xbg, s8d

wherexb defines the position of the barrier. In the low-noise
limit, the time spent inside the domain is very large and the
previous equation is almost an equality. Such a result is con-
firmed by the numerical simulations done in Ref.[4].

To exactly get Kramers’ stationary rate at the barrier, one
should only count the periods of time when the test particle
is in the domainG bounded by the saddle. Time periods
during which the test particle is out ofG that are included in
the MLPT should not be taken into account:

Pst − t0,xb;x0d = lim
N→`

1

No
n=1

N

pnst − t0d, s9d

with pnst− t0d=1 when thenth particle is inG and pnst− t0d
=0 else. Thepn’s could easily be written in term of Heavi-
side step functions. Then, the exact equivalent of Kramers’
stationary rate is the mean time spent in the domainG.

To make the MFPT physically meaningful, one should
keep the domainG up to a pointxe beyond the saddle where
one can safely neglect the backward currents due to the po-
tential slope. In the steady-state limit, the fluxq is the same
in any point, but to get the usual Kramers’ stationary rate,
one needs to evaluate the population inside the well up to the
saddle only:

E
−`

xb

Wsxddx=E
G

Wsxddx−E
xb

xe

Wsxddx. s10d

The second term of the right-hand side of the previous equa-
tion can be evaluated easily by the well-known concept of
average saddle-to-scission time in nuclear physics,tb→e:

E
xb

xe

Wsxddx= qtb→e. s11d

Taking this into consideration, Eq.(5) finally yields

TMFPTfx0 → xeg =
1

GK
+ tb→e. s12d

tb→e can be evaluated analytically within Kramers’ approxi-
mations if the potential is locally an inverted parabola[11].
Again, in the low-noise limit, ifxe is not too far, the time
spent inside the well is far longer than the saddle-to-scission
time and one recovers the well-known equivalence between
Kramers’ rate at the saddle and the MFPT beyond. But this is
not correct in general.

In Ref. [4] another saddle-to-scission time was intro-
duced:

tb→e
L = TMFPTfx0 → xeg − TMLPTfx0 → xbg. s13d

From Eqs. (8) and (12), one immediately has thattb→e
L

&tb→e, which can be easily understood becausetb→e
L is the

direct time from saddle to scission. In the low-noise limit,
these two times are close.

DYNAMICAL TIMES

An important point concerns numerical simulations done
with test particles that generally do not include any source
term in the well and are closer to reality in the escape prob-
lem. Even if the escape rate tends to a constant value, the
population in the domain and the escape current are not sta-
tionary anymore. Naturally, both MFPT and MLPT do not
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depend on the existence of the source. Thus, instead of
Kramers’ stationary rate which needs a source, we will rather
use the mean time spent in the domain bounded byxb as an
equivalent quantity and show that this mean time is also
equal to the mean passage time at the top of the barrier. The
escape current, defined as

jst − t0,xb;x0d = −
]Pst − t0,xb;x0d

]t
, s14d

gives the distribution of the escape time. Equation(14) is a
consequence of the continuity equation. Then, the mean pas-
sage time(MPT) could simply be evaluated:

TMPTfx0 → xbg =E
t0

+`

t jst − t0,xb;x0ddt s15d

=E
t0

+`

Pst − t0,xb;x0ddt. s16d

The second line was obtained by a trivial integration by parts
using the fact thatPst− t0,xb;x0d vanishes for large time. We
would like to stress here that the mean passage time coin-
cides with the nonlinear relaxation time. The latter was com-
pared analyticaly to the MFPT in Ref.[12] in some particular
situations.

Defining Pst− t0,xb;x0d as in Eq.(9) from the time spent
by test particles in the domainG bounded by the saddle, this
last equation could be integrated and yields

E
t0

+`

Pst − t0,xb;x0ddt = 1/GK, s17d

where Kramers’ stationary rate is defined as the mean time
spent in the domainG limited to the saddle. Equation(17) is
then a convenient way to evaluate Kramers’ stationary rate in
a nonstationary context without any source term.

For systems initially in the well, but far from thermal
quasiequilibrium, numerical simulations also show that a re-
laxation regime appears before reaching a quasistationary
flux [13]. The corresponding additional transient time is
linked to the thermalization process of the system in the
metastable well and naturally depends on the initial condi-
tions. It generally takes a finite time to the variablex to be
thermally distributed in the potential well, especially if one
starts with a fixed initial position, whereas the momenta ther-
malize faster in the high-viscosity case. Unfortunately, a gen-
eral analytic formula is so far not available for this transient
regime and simple phenomenological functions are generally
used to match the numerical results. In the overdamped re-
gime, a realistic approximate transient function was derived
in Ref. [14], based on the exact solution of the Langevin or
Klein-Kramers equations in a parabolic potential well[15].

Let us denoteGstd the escape rate at saddle from a meta-
stable well without any source andG` its long time-limit. By
definition, one has

−
]Pst,xb;x0d

]t
= GstdPst,xb;x0d. s18d

In the absence of a relaxation regime, assuming that the es-
cape rate is constant, this last equation could easily be inte-
grated into

Pst,xb;x0d = e−G`t, s19d

and then, Eq.(17) yields GK=G`. In order to express simply
the effect of the transient regime on the escape rate, we will
assume a crude description of the transient function. Consid-
ering a step function up to the transient timetr,

Gstd = Qst − trdG`, s20d

Eqs.(18) and (17) yield

1/GK = TMPTfx0 → xbg = tr + 1/G`. s21d

Then, Kramers’ rate depends on the transient time, but
should also depend on the nature of the relaxation process.
Consequently, the MFPT to a point beyond the saddle in-
cludes all these dynamical times as well. Such a result con-
tradicts the claim of Ref.[5] that “in the very concept of
MFPT there is no room for a transient effect.” It may look
surprising that Kramers’ stationary rate corresponding to a
long-time limit includes a relaxation process. But the station-
arity is due to a source and each injected particle has to first
experience a thermalization process. Then, one should also
be cautious with numerical tests, not assimilatingGK andG`.
At low temperature, 1/G` becomes very large and the tran-
sient timetr can be neglected in Eq.(21). Thus, one has
GK.G`.

Finally, we would like to stress that Kramers’ formula[1]
corresponds to a very specific case of Kramers’ escape rate
over the saddle since several assumptions were made to get
it. Besides the low-temperature limit, a specific source term
is implicitly supposed[10] that is close to a thermalized
distribution. With such an initial distribution, the relaxation
time vanishes and thus, Kramers’ formula is close toG`.

CONCLUSION

As a conclusion, we have shown that the stationary escape
rate from a thermally unstable potential well is equal to the
mean time spent in the domain or the MPT at the border.
When the domain is limited by a sink on the boundaries,
MPT, MFPT, and MLPT are exactly the same quantities
since the particle crosses the border only once. On the con-
trary, when the domain is limited to the barrier top, backward
currents change the situation. Kramers’ stationary escape
time is then equivalent to the NLRT. It is close to the MLPT
and an additional saddle-to-scission time should be added to
get the MFPT to a point beyond the barrier. These relation-
ships make Kramers’ theory useful, even for problems with-
out a source assuring stationarity. The choice of the most
suitable concept to evaluate the escape time depends on the
physical situation. As for the nuclear fission problem, this
will be discussed in another paper. Finally, we have also
shown that Kramers’ stationary rate and, consequently, the
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MFPT include both the relaxation time and the long-time
limit escape rate of the realistic problem without any source.
In the case of Kramers’ formula derived with very specific
assumptions, the initial condition is such that the relaxation
time vanishes and the formula rather corresponds to the long
time limit rateG`.
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